Laser ultrasonic measurements of grain size during processing of metals and alloys.

Thomas Garcin, Matthias Militzer
The Centre for Metallurgical Process Engineering, The University of British Columbia

Acknowledgments: Warren Poole, Chad Sinclair, Mahsa Keyvani,
Real time microstructure control

- Complementary tool to control metallurgical processes
- Estimate optimum process parameters for novel metal and alloys
Thermo-mechanical processing lab
Real time sensing at high temperature

15 mm
Principle of the technique

Broadband ultrasound pulse (2 to 30 MHz)

Generation and detection laser pulses

Ultrasound pulse

Thermocouple

FEM simulation

Up to 50 waveforms measured per second

5th International Symposium on Laser Ultrasonics and Advanced Sensing
Measured ultrasonic parameters

- Properties of ultrasound compressional waves
- Time of arrival of echoes -> Velocity V
- Amplitude of echoes -> Attenuation $\alpha(f)$

Filtered signal

\[
V = \frac{2(e + \epsilon)}{\tau} \\
\alpha(f) = \frac{20}{2e} \log \left(\frac{A_{echo(i)}}{A_{echo(j)}} \right)
\]
Velocity of ultrasonic wave

Rotated Elastic Tensor

\[C_{ijkl} = \int c'_{ijkl} f(odf) \]

\[T_{ik}(\vec{n}) = C_{ijkl} \vec{n}_j \vec{n}_l \]

\[V = \sqrt{\sum \frac{K(odf)}{\rho}} \]

What can be investigated?
Phase transformation
Second phase/Precipitation
Recrystallization

EBSD to **Velocity map** (mm/µs)

Velocity Distribution

EBSD to Velocity map (mm/µs)*

Velocity Distribution

Pure Titanium

Fraction of Orientation

Pressure wave velocity (mm/µs)

5th International Symposium on Laser Ultrasonics and Advanced Sensing
In polycrystalline metals, scattering depends on ultrasonic wavelength

- **Rayleigh Region**
 \[\alpha(D, \lambda) = C_r D^3 \lambda^{-4}, \lambda \gg D \]

- **Stochastic Region**
 \[\alpha(D, \lambda) = C_s D \lambda^{-2}, \lambda \approx D \]

- **Diffusion Region**
 \[\alpha(D, \lambda) = C_d / D, \lambda \ll D \]
How to estimate the grain size?

1) Reference sample D_0
2) **ONE ECHO METHOD**

Isolate only grain scattering

Measurement precision < 10 %

$$\alpha(f) = a + b f^n$$

Frequency dependant grain size parameter

$$b = C(T)[D_i^{n-1}(t) - D_0^{n-1}(t_0)] f^n$$

5th International Symposium on Laser Ultrasonics and Advanced Sensing
Application to austenite in steel

1) Reference fine grain sample at room temperature

\[\alpha(f) = a + bf^3 \]

2) Calibration developed at Timken (S.E. Kruger et al., Iron Steel Technol, (2005), 2(10),25
Application to hot rolling processes

✓ Grain size measurement after hot-deformation in Mo-TRIP steel

✓ Strain = 0.2 and 0.4
Austenite grain refinement

- Larger grain refinement at higher deformation strain

![Graph showing grain size vs. time with T_{def} = 900°C and 25 µm scale bars](image)
Nickel based super alloys

- Control the grain growth + dissolution of second phase particles prior to forging
- Starting structure has 20 µm polygonal grain
- + 2 to 3 % of delta phase precipitates
Stage of heterogeneous grain growth

- Local Nb microsegregations affect the stability of the second phase leading to heterogeneous grain growth (Fraction of large and small grains)
Metallographic analysis

- Evaluation of the mean grain size $\text{EQAD} = \sqrt{\frac{4\bar{A}}{\pi}}$
- Maximum 1% largest grain diameter

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>EQAD(μm)</th>
<th>D_{MAX}(μm)</th>
<th>$\frac{D_{\text{MAX}}}{\text{EQAD}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>56</td>
<td>3.7</td>
</tr>
<tr>
<td>30</td>
<td>18</td>
<td>120</td>
<td>6.7</td>
</tr>
<tr>
<td>75</td>
<td>19</td>
<td>139</td>
<td>7.3</td>
</tr>
<tr>
<td>175</td>
<td>33</td>
<td>139</td>
<td>4.2</td>
</tr>
<tr>
<td>480</td>
<td>36</td>
<td>155</td>
<td>4.3</td>
</tr>
<tr>
<td>900</td>
<td>42</td>
<td>172</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Cumulative Volume Fraction

Reduced grain size (D/EQAD)

5th International Symposium on Laser Ultrasonics and Advanced Sensing
Correlation at 1050°C

• Evolution of the scattering parameter \(b \) with the relative change in mean grain size.

• Direct measurement of the coefficient \(C^* \)

\[
\sqrt{|1000 \cdot b(t_i, D_i)|} = C^* \sqrt{D_i^2(t_i) - D_0^2(t_0)}
\]

Linear regression coefficient \(C^* = 0.022 \)
Grain grow tests

- Insight into the grain growth behavior.
- Different grain growth stages

 1) Zener \[\frac{dD}{dt} = K \left(\frac{1}{D} - P_0 \right) \]

 2) Rapid grain growth

 3) Parabolic \[D^2 - D_{init}^2 = Kt \]
Criteria for abnormal grain growth

- Normalization procedure
- Time at the onset of abnormal grain growth

<table>
<thead>
<tr>
<th>D_{init} (μm)</th>
<th>K (μm2.s$^{-1}$)</th>
<th>P_0 (μm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1.6</td>
<td>0.0574</td>
</tr>
</tbody>
</table>
Cobalt super alloys

5th International Symposium on Laser Ultrasonics and Advanced Sensing
Empirical correlation

\[\alpha(f) = a + bf^3 \]

\[\sqrt{|1000b|} = \Gamma(T)\delta \left(\sqrt{|D_i^2 - D_0^2|} \right)^{1-\epsilon} \]

Grain size dependence

Temperature dependence
Grain growth model

\[D^m - D_{\text{init}}^m = \Phi(T)t \]

Effective mobility

\[\Phi(T) = \lambda_1 \exp\left(-\frac{\lambda_2}{kT}\right) \]
Closer look at the attenuation spectrum

- These empirical approaches require adjusting the effective bandwidth
- Because they do not account for multiple regimes of scattering

\[\alpha(f) = a + bf^3 \]
Computer generated grain structure

- Finite element simulation of wave propagation on polycrystalline materials
- Centroidal voronoi tessellation: all cells have 6 faces but the final structure is not ordered
Material properties

- Single crystal stiffness tensor
- FCC iron at 1423 K (Zarestky et al., 1987, Phys.Rev. B 35(9), pp.4500)
- Single crystal elastic constant:
 \[c_{11} = 154 \text{ GPa} \]
 \[c_{12} = 122 \text{ GPa} \]
 \[c_{44} = 77 \text{ GPa} \]
- Zener Anisotropy factor
 \[c_{44}/c' = 4.8 \]
- Crystallographic orientation

![Velocity Graph](attachment:image.png)
FEM simulation of ultrasound propagation

- Displacement field for austenite (D = 300μm)
Results: Attenuation spectrum

- $D = 30 \, \mu m$
- $D = 70 \, \mu m$
- $D = 200 \, \mu m$
- $D = 300 \, \mu m$
- $D = 100 \, \mu m$
- $D = 400 \, \mu m$
Validation using austenite calibration

- By selecting appropriate frequency range, the austenite calibration provide satisfying agreement with FEM generated attenuation spectrum

![Graph 1](image1.png)

![Graph 2](image2.png)
Validation with scattering theory

Normalized attenuation

Normalized frequency

5th International Symposium on Laser Ultrasonics and Advanced Sensing
New approach for grain size measurements

- Evaluation of grain size accounting for multiple regimes of scattering
- Using FEM simulated attenuation and/or scattering theory to predict grain size.
Quantitative tool to validate LUMet results

Example: Attenuation spectrum measured in austenite at high temperature.

Least square approach on FEM data provide quantitative estimate of the mean grain size.
Conclusions

• Ultrasonic attenuation can be sensitive to the self similarity of grain size distribution.

• FEM are integrated to simulate the wave propagation in anisotropic aggregate.

• Although in 2D (plain strain), it gives quantitative results.

• Empirical methodology (single scattering regime) have limitations in coarse grained structure.
Reference (isotropic) material

- Random ODF (Volume Fraction of orientation V)
- Weighted average on elastic tensor (T)

\[
\langle T \rangle^{\text{Reuss}} = \left[\sum_{m=1}^{M} V_m T^{-1}(g_m^c) \right]^{-1}.
\]

\[
\langle T \rangle^{\text{Voigt}} = \sum_{m=1}^{M} V_m T(g_m^c).
\]

<table>
<thead>
<tr>
<th>Stiffness tensor (Unit: GPa)</th>
<th>Reuss (isoStress)</th>
<th>Hill (Average)</th>
<th>Voight (isoStrain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (RD)</td>
<td>173.6 112.0 112.4</td>
<td>2.1 1.1 -1.0</td>
<td>188.3 104.6 105.1</td>
</tr>
<tr>
<td>Y (TD)</td>
<td>112.0 173.9 112.2</td>
<td>-1.0 -2.1 -1.0</td>
<td>104.6 188.5 104.9</td>
</tr>
<tr>
<td>Z (ND)</td>
<td>112.4 112.2 173.4</td>
<td>-1.1 1.0 2.0</td>
<td>105.1 104.9 188.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wave Velocity (mm/us)</th>
<th>P-Wave</th>
<th>S1-Wave</th>
<th>S2-Wave</th>
<th>P-Wave</th>
<th>S1-Wave</th>
<th>S2-Wave</th>
<th>P-Wave</th>
<th>S1-Wave</th>
<th>S2-Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (RD)</td>
<td>4.7787</td>
<td>2.0735</td>
<td>1.9493</td>
<td>4.9762</td>
<td>2.4032</td>
<td>2.2770</td>
<td>5.1662</td>
<td>2.6928</td>
<td>2.5631</td>
</tr>
<tr>
<td>Y (TD)</td>
<td>4.7829</td>
<td>2.0705</td>
<td>1.9441</td>
<td>4.9800</td>
<td>2.4003</td>
<td>2.2717</td>
<td>5.1703</td>
<td>2.6900</td>
<td>2.5577</td>
</tr>
<tr>
<td>Z (ND)</td>
<td>4.7755</td>
<td>2.0759</td>
<td>1.9542</td>
<td>4.9728</td>
<td>2.4053</td>
<td>2.2821</td>
<td>5.1625</td>
<td>2.6948</td>
<td>2.5685</td>
</tr>
</tbody>
</table>

5th International Symposium on Laser Ultrasonics and Advanced Sensing
Selection of appropriate averaging

- Velocity in the small grain size sample should be close to satisfy the isotropic condition.

\[D = 30 \text{ um} \Rightarrow V = 5.1035 \pm 0.005 \]

\[D = 100 \text{ um} \Rightarrow V = 5.134 \pm 0.048 \]

<table>
<thead>
<tr>
<th>Reuss (isoStress)</th>
<th>Hill (Average)</th>
<th>Voight (isoStrain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Wave</td>
<td>S1-Wave</td>
<td>S2-Wave</td>
</tr>
<tr>
<td>X (RD)</td>
<td>4.7787</td>
<td>2.0735</td>
</tr>
<tr>
<td>Y (TD)</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>