

Laser ultrasonics examination of dynamic recrystallization in Mo-TRIP steel

Thomas Garcin, Matthias Militzer, Warren J. Poole

The Center for Metallurgical Process Engineering, The University of British Columbia

thomas.garcin@ubc.ca

Acknowledgement

A.Moreau, Dongsheng Liu, Fateh Fazeli

Motivation

- ✓ Monitoring in-situ the microstructure evolution in steel after and during hot-deformation
- ✓ Work-hardening, recovery, recrystallization
- ✓ Static or dynamic processes
- ✓ Challenging processes to characterise in austenite with existing techniques
- ✓ What type of information can LUMet provide ?

Caption:
Charles Sturt University, Sydney,
Australia, Material Engineering

Material and setup

- ✓ Mo-TRIP, forged bar
- ✓ Composition (wt %) C0.19, Mn1.5, Si1.6,Mo0.2
- ✓ Cylindrical sample 10*15
- Uniaxial compression tests
- ✓ Translating laser table to follow the center of the sample

Measurement on cylinder

- ✓ Pulse echo configuration
- ✓ Small beam spot size Generation: radiation pattern similar as for plate

Detection: Negligible phase shift

✓ F_c = 6 MHz Wavelength = 1000 µm Beam spot size 1.5 mm Phase shift = 18 µm

Fresnel parameter $S = \lambda z/a^2$ First echo S = 9Second echo S = 18Far Field Region

Complex waveform

- Multiple acoustic waves are being generated and start to propagate in various directions
- ✓ High intensity pressure pulse travels across the diameter
- ✓ Surface wave of lower amplitude propagates around the circumference
- ✓ Lower amplitude pressure waves reflect and modeconvert into shear waves

Static recrystallization in austenite

- ✓ Grain size measurement after hot-deformation
- ✓ Strain = 0.2 and 0.4
- ✓ Single echo technique + Available austenite calibration

Recrystallization kinetics

- ✓ Initial austenite grain size prior to deformation: 40 µm (Liu.D et al. Met. Mater. Trans 38A, 2007, pp 897)
- ✓ Recrystallization kinetics measured from interrupt compression test (double hit tests).

Austenite grain size evolution

✓ Larger grain refinement at higher deformation strain

Hot-compression experiment

- Attenuationmeasurement duringhot-compressions
- √ 3 strain rates

In-situ monitoring during deformation

✓ Successfully follow the center of the sample up to a rate of 1mm/s⁻¹

Video of in-situ LUMet inspection

Analysis methodology

- Sample is continuously changing in shape
- ✓ No reference microstructure can be obtained
- Attenuation calculated by the ratio of amplitude spectrum of first and second echoes
- ✓ Variation of attenuation at a single frequency

$$\alpha(f) = -\frac{20}{2D(1+\varepsilon)} \log 10 \left(\frac{1}{g} \frac{A_2(f)}{A_1(f)} \right)$$

$$v = \frac{2(D+\xi)}{\tau}$$

Attenuation change during deformation

✓ Measurements are reproduced to test repeatability.

Effect of strain rate on attenuation

- ✓ Higher strain rate delays the onset of dynamic recrystallization.
- ✓ 1/ Attenuation decreases at a constant rate
 2/ later, marked decrease
 3/ increases again at decreasing rate
- Minimum of attenuation is shifted toward higher strain

Effect of strain rate on velocity

- ✓ When recrystallization occurs, this should be associated to a change in the bulk texture in austenite
- ✓ Several stages are evidenced on the velocity curve during the deformation
- ✓ Transition depends on strain rate

Discussion and future work

- ✓ Single peak in the flow stress curves
- ✓ Indication of dynamic recrystallization
- ✓ Systematic variation of ultrasound parameter
- ✓ Ex-situ metallography for validation
- ✓ Measurement on transmission ?