

Application of Laser Ultrasonics for the evolution of microstructure in INCONEL 718 superalloy

Thomas Garcin¹, Jean Hubert Schmitt², Matthias Militzer¹, Warren J. Poole¹

- ¹ The Center for Metallurgical Process Engineering, The University of British Columbia
- ² Ecole Centrale Paris, Laboratoire Mécanique des Sols, Structures, et Matériaux UMR CNRS 8579

thomas.garcin@ubc.ca

Motivation

- ✓ Inconel 718 used in aviation industry
- ✓ High strength, stable at elevated temperature
- Dynamic recrystallization may occurs during forging
- ✓ First step, monitoring of grain growth
- ✓ ... Static recrystallization, ...dynamic measurements

J. F. Barker

The initial years of alloy 718.

TMS Superalloys 718, 625,

706 and various derivatives

(1989)

Material INCONEL 718

- ✓ Composition (Key elements wt.fraction)
 0.52Ni, 0.19Cr, 0.19Fe, Mo, Nb, Ta, Ti, Al, Co
- ✓ Grain size 24 µm, globular delta phase precipitates

Experiments

- ✓ Isothermal holding at 1050°C for various time
- Attenuation measurement under isothermal conditions
- ✓ Validation with metallography

Ultrasound signal

✓ For each waveform, analysis of the frequency content of the first echo relative to the echo measured in the initial state

Modified single echo technique

✓ Ideally, reference waveform is measured in fine grain material, negligible scattering by grain

$$\alpha(f) = -\frac{20}{2D} \log 10 \left(\frac{g(f)A_{sc}(f)}{g(f)} \right) \stackrel{\text{t}}{\longleftarrow} t \neq t_{ref}$$

$$\alpha(f) = a + CD^{n-1}f^{n}$$

$$\alpha(f) = a + bf^{3}$$

$$b \propto CD^{2}$$

✓ Absolute grain size measurement

Modified single echo technique

✓ Here, reference has scattering contribution

$$\alpha(f) = -\frac{20}{2D} \log 10 \left(\frac{g(f) A_{sc1}(f)}{g(f) A_{sc0}(f)} \right) \stackrel{\text{t \neq t_{ref}}}{\longleftarrow} t \stackrel{\text{t $\neq$$

✓ Relative change in grain size

Attenuation, grain size parameter

✓ Systematic evaluation of the grain size parameter b from the measured attenuation spectrum

Attenuation, grain size parameter

- ✓ Identification of two main stages
- √ 75s to 200s, rapid increase
- ✓ Above 200s, steady raise at slower rate
- Don't reach a limiting value at 15 min

Initial and final stage

- ✓ Average grain size increases by a factor of 4 during the 15 mn annealing
- √ 900 s: Delta phase is almost fully dissolved
- √ 900 s: Formation of annealing twins

Evolution of Delta phase

- √ 30s : Coarsening and dissolution of delta phase
- √ 480s: Small fraction of delta phase remains, most GB are unpinned

Heterogeneous grain structure

- √ 75s: Faster grain growth in certain area of the sample
- √ 480s: Few zones with small grains remains

Mean grain size, distribution

Quantitative analysis of optically measured grain area

$$EQAD = \sqrt{\pi \bar{A}/4}$$

✓ Log normal distribution,M, S

$$\mu = \exp(M + \frac{S^2}{2})$$

Time	EQAD	μ (M)	σ (S)
0	24	24 (3.05)	13 (0.52)
30	27	29 (3.17)	20 (0.63)
75	33	32 (3.20)	25 (0.70)
130	37	38 (3.24)	42 (0.89)
175	44	40 (3.45)	32 (0.70)
230	46	43 (3.50)	32 (0.68)
480	62	59 (3.86)	42 (0.65)
900	82	74 (4.07)	60 (0.70)

Volume fraction

- ✓ Large volume occupied by larger grains at the early time of the holding
- ✓ Not clearly a bi-modal grain distribution

Attempt to build calibration

- ✓ Simple relation between mean grain size and grain size parameter?
- ✓ Mean grain size only is not correctly describing the evolution of the size distribution.
- ✓ LUMet seems sensitive to variation in the distribution.
- ✓ Larger grains contribute more to the LU signal

Attenuation and size distribution

- ✓ Evaluate the expected variation of the attenuation according to a measured size distribution
- Empirical approach based on scattering theory
- Construction of time dependant distribution F(S,M,t)

Prediction of the attenuation parameter

✓ Attenuation spectrum weighted by the distribution of grain size in the materials

$$\alpha(f, F(D)) = Cst \cdot \sum_{i}^{n} F(D_{i})D_{i}^{2}f^{3}$$

- Evidence of two regimes
- ✓ Transition is still not very well described
- ✓ To simplistic approach, may be aid by Finite Element simulations

Future work

- May be better to consider a bi-modal distribution composed of :
 - ✓ Initial distribution F_0 (M_0 , S_0)
 - ✓ Distribution of larger grain growing F_L (M_L,S_L)
- ✓ What is the best manner to include the twins in the grain size statistic?
- Can we define or extract a parameter related to the width of the distribution?

Conclusions

- ✓ Grain growth influenced by the heterogeneous dissolution of the delta phase
- ✓ Mean grain size not a sufficient parameter to construct the ultrasound calibration

- ✓ LUMet measurement may be capable of indicating the end of period of "abnormal" grain growth
- ✓ Can rapidly give important indication on the time required for annealing prior to forging.