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Motivations
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Control of metallurgical 
processes in metals using 
laser-ultrasonic sensor

Ultrasonic wave propagation 
depends on microstructure

Real time microstructure sensing

Optical microscopy

Electronic microscopy



Gleeble + LUMet Technology
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LUMet analysis software
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created in 2014 as UBC Spinoff company

www.ctome.org

Ultrasonic properties

Metallurgical properties



Principle of the technique
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FEM simulation

Up to 50 waveforms 
measured per second 

Broadband ultrasound 
pulse (2 to 30 MHz)



What parameters are measured ? 

• Time of arrival of echoes -> Velocity 𝑉

• Amplitude of echoes -> Attenuation α(𝑓)
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𝑉 =
2(𝑒 + 𝜖)

𝜏

α(𝑓) =
20

2𝑒
log
𝐴𝑒𝑐ℎ𝑜(𝑖)

𝐴𝑒𝑐ℎ𝑜(𝑗)

Filtered signal

𝜏



Velocity of ultrasonic wave in crystals
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𝐶𝑖𝑗𝑘𝑙 =  𝑐
′
𝑖𝑗𝑘𝑙𝑓(𝑜𝑑𝑓)

What can be investigated ?  
Phase transformation
Second phase/Precipitation 
Recrystallization

EBSD to Velocity map (mm/µs)
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Velocity Distribution
𝑉 =  

𝑃ℎ𝑎𝑠𝑒𝑠

𝐾(𝑜𝑑𝑓)

𝜌

Pure Titanium

Rotated Elastic Tensor



Velocity : Precision and Accuracy
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Absolute accuracy in velocity ≈ 1%

Limiting factor:  thickness  (Δe = 10 μm)

Precision < 0.1% 

Limiting factor: time delay  (Δτ = 1 ns)

𝑉 =
2(𝑒 + 𝜖)

𝜏



Velocity : Precision and Accuracy
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Example for iron bcc-fcc
Isotropic case
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Good sensitivity 
for fcc to bcc 
transformation

Precision

Absolute accuracy in velocity ≈ 1%

Limiting factor:  thickness  (Δe = 10 μm)

Precision < 0.1% 

Limiting factor: time delay  (Δτ = 1 ns)



Attenuation and Scattering by grains 
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V1 V2<V1

Scattering in bi-crystalP
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Scattering depends on ultrasonic wavelength

Scattering depends on grain 
boundary disorientation and 

incidence angle and grain volume

Nicoletti et al. 1994

Large grain size = High attenuation 



Other sources of attenuation
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𝛼(𝑓) = 𝑎 + 𝑏𝑓𝑛 + 𝑐𝑓𝑚

Grain Scattering Diffraction
(sample geometry)

Internal Friction/Gain
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TWO ECHO METHOD
D = 2e D = 4e



How to measure grain size ?
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𝛼(𝑓) = 𝑎 + 𝑏𝑓𝑛

𝑏 = 𝐶(𝑇)  𝐷𝑖
2(𝑡) − 𝐷0

2(𝑡0 𝑓
3

1) Reference sample 𝐷0
2) ONE ECHO METHOD

Isolate only grain scattering 

Measurement precision < 10 % 

Frequency dependant grain size parameter

Reference

Current

Reference

Current

High 
Scattering

Low 
Scattering



Preliminary calibration is necessary 
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𝑏 = 𝐶(𝑇)  𝐷𝑖
2(𝑡) − 𝐷0

2(𝑡0 𝑓
31) Reference sample𝐷0

2) Use one single echo

Isolate only grain scattering 

Measurement precision < 10 % 

Correlation available : 
Austenite in Steel, 

Inconel, Cobalt, 
Copper 𝐷𝑖

2 − 𝐷0
2Metallographic Grain size (µm) 
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Recrystallization/Austenite formation 
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Dual Phase Steel 50% cold rolled (Intercritical annealing treatment)
wt%: 0.105C-1.858Mn-0.157Si-0.012Ti-0.009Mo-0.006N
Interaction between ferrite recrystallization and austenite formation 

End of 

recrystallization

TCurie

Heating rate 



Recrystallization/Austenite formation 
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Dual Phase Steel 50% cold rolled (Intercritical annealing treatment)
wt%: 0.105C-1.858Mn-0.157Si-0.012Ti-0.009Mo-0.006N
Interaction between ferrite recrystallization and austenite formation 

TCurie

End of 

recrystallization

Dilatometry



Austenite formation and grain growth
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X80 microalloyed low carbon linepipe steel (Heating  rate 100°C/s)
wt%: 0.06C-1.65Mn-0.11Si-0.034Nb-0.014Ti-0.24Mo-0.005N

f5%

f95%

Dilatometry

MODEL

Small variation of 
velocity in the 
austenite formation 
temperature range 



Austenite formation and grain growth
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X80 microalloyed low carbon linepipe steel (Heating  rate 100°C/s)
wt%: 0.06C-1.65Mn-0.11Si-0.034Nb-0.014Ti-0.24Mo-0.005N

f5%

f95%

Dilatometry

Important change of 
attenuation during 
magnetic transition 
and austenite 
formation



Austenite formation and grain growth
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X80 microalloyed low carbon linepipe steel (Heating  rate 100°C/s)

Subsequent austenite grain growth following austenite formation 

f5%

f95%

Dilatometry



Austenite decomposition
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Low-carbon linepipe steel (Heating 100°C/s to 1150°C, cooling 3°C/s)
wt%: 0.06C-1.49Mn-0.2Si-0.047Nb-0.038Al-0.0094N
Rule of mixture between parent and product phase



Hot deformation experiments
• Mo-TRIP, forged bar

• Composition (wt %) C0.19, Mn1.5, 
Si1.6,Mo0.2

• Uniaxial compression tests
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Static 
Recrystallization



Evolution of the average grain size
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Grain refinement during 
recrystallization

LUMet

25 µm

25 µm

Liu.D et al., 894
Sarkar.S et al., 897

Double hit tests

f95%

f5%



Evolution of the average grain size
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Larger grain refinement at 
higher deformation strain 

LUMet

25 µm

25 µm
Liu.D et al., 894

Double hit tests

Metallography D = 24 μm

Metallography D = 12μm



Measurement during deformation ?
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Max Stroke displacement 1mm/s-1 

(strain rate of 0.1 s-1 for 10x15 mm cylinder

Max length to diameter ratio 0.6 (Max Strain ≈ 0.4)

In-situ LUMet inspection

Initial 
stroke 

position



Wave reflection on curved surface
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LUMet Signal

Geometry (Diffraction) is evolving with time

→ Must use two echoes of the same waveform

Inversion of polarity of the echoes in 

cylinder geometry

Max

Min



Wave reflection on curved surface
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FEM Single Crystal, Isotropic
Diffraction in a cylinder 

FEM Signal

LUMet Signal

How to prevent polarity change 
between echoes ?

Max

Max

Min

Min



Improved geometry for compression tests
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Faceted cylinders for propagation between flat surfaces 

No polarity inversion 

Onset of 
dynamic 

Recrystallization



Effect of strain rate on attenuation

Delays the onset of dynamic recrystallization.

Decrease in attenuation related to diminution of the 
average grain size in the material during recrystallization
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Guidelines and conclusions
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Range of applications of LUMet

1 mm < thickness < 13 mm
Temperature up to 1300°C
Grain size up to 300 µm
Strain up to 0.4
Strain rate up to 0.1 s-1

Precision in Bulk Modulus 0.05%

LUMet – disruptive sensor technique for Research and 
Development, process modelling and process control:  
Innovative microstructure design for better steels


