

In-situ evaluation of metallurgical phenomena using laser generated ultrasonic waves

Thomas GARCIN and Matthias MILITZER

Centre for Metallurgical Process Engineering
The University of British Columbia
Jun 28th –July 3rd 2015

Contributors:

Mahsa Keyvani, Alyssa Shinbine, Mykola Kulakov, , Quentin Puydt, Chad Sinclair, Warren J. Poole, Jean H. Schmitt, Damien Fabrègue, Andre Moreau

Acknowledgements:

Canada Foundation for Innovation (CFI)
Natural Sciences and Engineering Research Council (NSERC) of Canada

Motivations

Optical microscopy

c: 5min

20

Electronic microscopy

Control of metallurgical processes in metals using laser-ultrasonic sensor

Ultrasonic wave propagation depends on microstructure

Gleeble + LUMet Technology

LUMet analysis software

CTOME

created in 2014 as UBC Spinoff company

Software & Consulting Inc.

Principle of the technique

What parameters are measured?

- Time of arrival of echoes -> Velocity V
- Amplitude of echoes -> Attenuation $\alpha(f)$

$$V = \frac{2(e+\epsilon)}{\tau}$$

$$\alpha(f) = \frac{20}{2e} \log \left(\frac{A_{echo(i)}}{A_{echo(j)}} \right)$$

Velocity of ultrasonic wave in crystals

5.7

5.5 5.4

EBSD to **Velocity map** (mm/μs)

Velocity Distribution

Rotated Elastic Tensor

$$C_{ijkl} = \int c'_{ijkl} f(odf)$$
$$T_{ik}(\vec{n}) = C_{ijkl} \vec{n}_j \vec{n}_l$$

$$V = \sqrt{\sum_{Phases} \frac{K(odf)}{\rho}}$$

What can be investigated?

Phase transformation Second phase/Precipitation Recrystallization

Velocity: Precision and Accuracy

Absolute accuracy in velocity ≈ 1%

Limiting factor: thickness ($\Delta e = 10 \mu m$)

Precision < 0.1%

Limiting factor: time delay ($\Delta \tau = 1 \text{ ns}$)

Velocity: Precision and Accuracy

Absolute accuracy in velocity ≈ 1%

Limiting factor: thickness ($\Delta e = 10 \mu m$)

Precision < 0.1%

Limiting factor: time delay ($\Delta \tau = 1 \text{ ns}$)

Example for iron bcc-fcc Isotropic case

Attenuation and Scattering by grains

Scattering depends on grain boundary disorientation and incidence angle and grain volume

Scattering depends on ultrasonic wavelength

Rayleigh Region $\alpha(D,\lambda) = C_r D^3 \lambda^{-4}, \lambda \gg D$

Stochastic Region $\alpha(D,\lambda) = C_s D \lambda^{-2}, \lambda \cong D$

Diffusion Region $\alpha(D,\lambda) = C_d/D, \lambda \ll D$

Nicoletti et al. 1994

Large grain size = High attenuation

Other sources of attenuation

TWO ECHO METHOD

Internal Friction/Gain Grain Scattering (sample geometry)
$$\alpha(f) = a + bf^n + cf^m$$

How to measure grain size?

- 1) Reference sample D_0
- 2) ONE ECHO METHOD

Isolate only grain scattering

$$\alpha(f) = a + \mathbf{b}f^n$$

Frequency dependant grain size parameter

$$b = C(T) [D_i^2(t) - D_0^2(t_0)] f^3$$

Measurement precision < 10 %

Preliminary calibration is necessary

- 1) Reference sample D_0
- 2) Use one single echo

$$b = C(T) [D_i^2(t) - D_0^2(t_0)] f^3$$

Isolate only grain scattering

Measurement precision < 10 %

Correlation available: Austenite in Steel, Inconel, Cobalt, Copper

Metallographic Grain size (μm)

Recrystallization/Austenite formation

Dual Phase Steel 50% cold rolled (Intercritical annealing treatment) wt%: 0.105C-1.858Mn-0.157Si-0.012Ti-0.009Mo-0.006N

Interaction between ferrite recrystallization and austenite formation

Recrystallization/Austenite formation

Dual Phase Steel 50% cold rolled (Intercritical annealing treatment) wt%: 0.105C-1.858Mn-0.157Si-0.012Ti-0.009Mo-0.006N

Interaction between ferrite recrystallization and austenite formation

Austenite formation and grain growth

X80 microalloyed low carbon linepipe steel (Heating rate 100°C/s) wt%: 0.06C-1.65Mn-0.11Si-0.034Nb-0.014Ti-0.24Mo-0.005N

Small variation of velocity in the austenite formation temperature range

Austenite formation and grain growth

X80 microalloyed low carbon linepipe steel (Heating rate 100°C/s) wt%: 0.06C-1.65Mn-0.11Si-0.034Nb-0.014Ti-0.24Mo-0.005N

Important change of attenuation during magnetic transition and austenite formation

Austenite formation and grain growth

X80 microalloyed low carbon linepipe steel (Heating rate 100°C/s)

Subsequent austenite grain growth following austenite formation

Austenite decomposition

Low-carbon linepipe steel (Heating 100°C/s to 1150°C, cooling 3°C/s) wt%: 0.06C-1.49Mn-0.2Si-0.047Nb-0.038Al-0.0094N

Rule of mixture between parent and product phase

Hot deformation experiments

- Mo-TRIP, forged bar
- Composition (wt %) C0.19, Mn1.5, Si1.6,Mo0.2
- Uniaxial compression tests

Evolution of the average grain size

Grain refinement during recrystallization

Liu.D et al., 894 Sarkar.S et al., 897

Evolution of the average grain size

Larger grain refinement at higher deformation strain

Liu.D et al., 894

Measurement during deformation?

- ✓ Max Stroke displacement 1mm/s⁻¹ (strain rate of 0.1 s⁻¹ for 10x15 mm cylinder
- ✓ Max length to diameter ratio 0.6 (Max Strain ≈ 0.4)

Wave reflection on curved surface

Geometry (Diffraction) is evolving with time

→ Must use two echoes of the same waveform

Inversion of polarity of the echoes in cylinder geometry

Wave reflection on curved surface

FEM Single Crystal, Isotropic Diffraction in a cylinder

How to prevent polarity change between echoes?

Improved geometry for compression tests

Faceted cylinders for propagation between flat surfaces

Effect of strain rate on attenuation

- ✓ Delays the onset of dynamic recrystallization.
- ✓ Decrease in attenuation related to diminution of the average grain size in the material during recrystallization

Guidelines and conclusions

Range of applications of LUMet

1 mm < thickness < 13 mm
Temperature up to 1300°C
Grain size up to 300 μ m
Strain up to 0.4
Strain rate up to 0.1 s⁻¹
Precision in Bulk Modulus 0.05%

LUMet – disruptive sensor technique for Research and Development, process modelling and process control: Innovative microstructure design for better steels